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1 Abstract

Neuromorphic computing is a paradigm of designing hardware and algorithms inspired by the brain’s architec-
ture and principles, promising major gains in energy efficiency and new computing capabilities. This review
provides a comprehensive overview of developments in neuromorphic computing from 2019 through 2024. We
survey hardware advances – including digital neuromorphic chips (e.g. Intel Loihi, IBM TrueNorth, and
SpiNNaker), emerging device technologies like memristors, spintronic circuits, photonic processors, and two-
dimensional (2D) material-based devices – that enable brain-like computation with vastly lower power than
conventional electronics. We also summarize algorithmic advances in spiking neural networks (SNNs),
covering progress in temporal coding strategies, the introduction of surrogate gradient methods for training
SNNs like deep networks, and biologically plausible learning rules such as e-prop for online learning in spiking
systems. Furthermore, we discuss key opportunities and gaps: the potential of neuromorphic systems to
approach aspects of human cognition or artificial general intelligence (AGI), applications in medicine (like
brain–machine interfaces and neural prosthetics) and science, the trade-offs between power efficiency and
computational precision, and challenges in integrating neuromorphic accelerators into existing computing
ecosystems. We conclude by highlighting how co-development of hardware and algorithms is critical to fulfill
the promise of neuromorphic computing, and by outlining open research directions on the path toward more
brain-like, efficient computing architectures.

2 Introduction

The human brain inspires a new class of computing architectures that radically depart from the conventional
von Neumann paradigm. In a classical computer, memory and processing are separated, and operations occur
in a sequential, clocked manner – a design that has led to tremendous performance gains but also faces power
and scalability limits. Neuromorphic computing, first envisioned by Carver Mead in the 1980s, instead seeks
to mimic the distributed, event-driven and parallel nature of brain networks. In a neuromorphic system,
many simple processing units (artificial “neurons”) operate in parallel and communicate via asynchronous
spiking events, merging memory and computation locally at synapses. This design promises to circumvent
the so-called von Neumann bottleneck (the limited bandwidth between processor and memory) by co-locating
computation with memory, and to achieve dramatically higher energy efficiency akin to biological brains.

By 2019, neuromorphic computing had evolved from early analog circuits and small-scale prototypes into
larger digital chips and emerging device technologies. Earlier milestones like IBM’s TrueNorth chip (2014)
demonstrated a fully digital neurosynaptic processor with 1 million spiking neurons, running on only about
70 mW of power. Likewise, the SpiNNaker system (first phase completed ~2018) incorporated a million
ARM cores to simulate spiking neural networks in real time, primarily aimed at large-scale brain simulations.
These efforts showed that orders-of-magnitude gains in energy efficiency are possible; TrueNorth, for example,
delivered ~46 billion synaptic operations per second per watt in some tasks. However, they also underscored
challenges: TrueNorth’s neural model was rigid and difficult to program for complex tasks, and many
academic neuromorphic platforms lacked software support, limiting their practical use.

Since 2019, research in neuromorphic computing has accelerated along two broad fronts. Hardware devel-
opments have diversified beyond digital CMOS chips into analog/mixed-signal designs and exotic technolo-
gies (memristive devices, spintronic circuits, photonic and 2D-material-based neuromorphic devices). These
new hardware platforms aim to improve scalability, density, and bio-realism of neural computations. At
the same time, algorithmic advances in spiking neural networks have made it easier to perform useful
computations on neuromorphic substrates. Notably, researchers developed methods to train SNNs with high
accuracy through surrogate gradients, and explored learning rules that are more biologically plausible or
hardware-friendly (such as local synaptic plasticity and reward-modulated learning). Neuromorphic algo-
rithms have also expanded into applications like vision, sensory processing, robotics, and optimization, often
leveraging the event-driven nature of SNNs for real-time processing of streaming data.

This article reviews the key hardware and algorithmic innovations in neuromorphic computing over 2019–
2024, and discusses the emerging opportunities and remaining challenges. We begin by surveying the state-
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of-the-art neuromorphic hardware, from established digital chips to novel devices. We then cover progress in
spiking neural network models, coding schemes, and learning algorithms that enable these systems to solve
tasks. Finally, we examine how neuromorphic computing is being positioned in broader contexts – from
efforts to approach brain-like intelligence, to use-cases in medicine and science – and identify gaps that must
be addressed to realize the full potential of this paradigm.

3 Hardware Advances (2019–2024)

Neuromorphic hardware comes in many forms, but all share the goal of implementing neural network compu-
tations (weighted spikes, integrate-and-fire neurons, synaptic plasticity, etc.) directly in physics for superior
efficiency. The 2019–2024 period saw significant progress in both digital neuromorphic processors and
in emerging technologies that emulate neurons/synapses at the device level. Here we summarize advances
in several major categories of neuromorphic hardware.

3.1 Digital Neuromorphic Chips

Digital CMOS neuromorphic chips use standard transistor technology to implement large spiking neural
networks with user-programmable connectivity. These chips typically encode neuron states in digital logic
but operate asynchronously and in parallel, often communicating via packet-based spike messages. IBM’s
TrueNorth was a landmark digital neuromorphic chip, with 4096 cores simulating 1 million spiking neurons
and 256 million synapses on a single chip, while consuming mere milliwatts. TrueNorth proved that digital
designs can achieve brain-like power efficiency; however, its neural model was fixed (e.g. no on-chip learning,
limited precision) and running arbitrary networks on it was challenging.

Building on that foundation, researchers turned to more flexible digital architectures. The SpiNNaker
project (University of Manchester and TU Dresden) developed a massively parallel computing platform
with ARM cores that emulate spiking neurons in software. The second-generation SpiNNaker-2 system,
described in 2019, scaled up to a planned 10 million cores connected via a custom network. SpiNNaker 2
introduced adaptive power management features (dynamic voltage and frequency scaling, power gating) to
allow energy use to scale with spiking activity. It also added hardware accelerators for tasks like convolution,
making it useful not only for brain simulation but also for machine learning workloads. By exploiting a 22nm
process and 3D integration, SpiNNaker-2 aims to increase spiking network simulation capacity by over 50×
compared to its predecessor, opening doors to real-time simulation of networks with billions of synapses.

Meanwhile, Intel’s Loihi neuromorphic chip (first released in 2018) matured into one of the most widely
used research platforms in this period. Loihi featured 128 cores and around 130,000 neurons per chip, with
fully digital yet highly flexible neuron models and on-chip spike-driven learning rules (e.g. spiking Hebbian
updates). Critically, Intel provided a software toolchain for Loihi, enabling a community of over 100 research
groups to experiment with it. By 2021, numerous results demonstrated Loihi’s ability to solve tasks with
significant speed and energy advantages over CPUs: e.g. constraint satisfaction problems, graph search,
odor classification, and robotic control, often at orders of magnitude lower energy. These studies began
to delineate niches where neuromorphic chips excel, such as sparse, event-driven workloads and problems
requiring fine-grained parallelism. In late 2021, Loihi 2 was introduced with roughly 1 million neurons per
chip and improved programmability (e.g. better support for dendritic compartments and higher precision),
further advancing digital neuromorphic capabilities.

Overall, digital neuromorphic processors in 2019–2024 have shown that brain-inspired architecture can
achieve extraordinary energy efficiency – often 100× to 1000× less energy per inference than conventional
processors on suitable tasks. They also highlight a trade-off: digital chips offer speed and reliability, but
reproducing rich neural dynamics or plasticity can be resource-intensive. This has led researchers to explore
mixed-signal and analog neuromorphic designs and new device technologies that naturally emulate
neuron/synapse behavior.

3



3.2 Memristive Devices and Analog Neuromorphic Hardware

One promising avenue for neuromorphic hardware is to use emerging memory devices (memristors, resis-
tive RAM, phase-change memory, etc.) as artificial synapses and neurons. Memristors are two-terminal
electronic devices that naturally remember their past current/voltage (via resistance state) and can thus
implement synaptic weight storage co-located with computation. Over 2019–2024, significant progress has
been made in integrating memristors into neuromorphic circuits. For example, researchers demonstrated
large crossbar arrays of memristors performing analog matrix-vector multiplications in one step, effectively
acting as layers of a neural network in hardware. Such in-memory computing leverages the physics of Ohm’s
law and Kirchoff’s law: when input voltages are applied to rows, the currents summing at each column
naturally compute the weighted sum through memristive conductances. This allows massively parallel, fast,
and energy-efficient computation that bypasses the need to shuttle data between separate memory and CPU.

A 2024 review by Xiao et al. surveyed recent progress from fundamental memristive devices to full neuromor-
phic chips. Materials advances have produced memristors with high endurance (millions of cycles), retention,
and multi-level analog states that are well-suited for representing synaptic weights. Novel devices such as
phase-change memory (PCM) and spin-transfer torque magnetic RAM (STT-MRAM) have been used to
build synaptic arrays that achieve online learning through local weight updates. For instance, researchers
have demonstrated STDP (spike-timing dependent plasticity) and other local learning rules implemented in
memristive crossbars, enabling unsupervised learning directly in hardware synapses. In parallel, prototype
neuromorphic accelerators using memristor crossbars have been reported: e.g. hybrid CMOS-memristor
chips that implement one or more layers of an SNN for tasks like image recognition. These systems exploit
analog computing for the core dot-products, with digital logic handling peripheral functions (thresholding,
resets, communication).

By bringing memory and computation together, memristive neuromorphic hardware can attain tremendous
energy efficiency and density. However, a key challenge highlighted in recent studies is device variability
and imperfections. Analog computing with nanoscale devices inevitably introduces noise and variability in
weights, which can degrade accuracy. Techniques like differential encoding, calibration, or training algorithms
robust to analog noise have been developed to mitigate these issues. Despite challenges, the consensus is
that memristor-based neuromorphic hardware holds great promise for fast, low-power AI at the edge, as
evidenced by progress in the early 2020s. By 2024, memristive neuromorphic prototypes were tackling tasks
in vision, speech, and associative memory with competitive accuracy, pointing toward integration of these
devices in future neuromorphic co-processors.

3.3 Spintronic Neuromorphic Computing

Spintronic neuromorphic devices leverage the spin of electrons and nanomagnetic phenomena to mimic
neural behavior. Spintronic devices are inherently non-volatile (retaining state without power) and can
exhibit dynamics such as oscillations and threshold switching that parallel neuron spiking. A 2024 review by
Marrows et al. surveys the state-of-the-art in using spintronic technology for neuromorphic computing. Key
components include spintronic synapses – often based on magnetic tunnel junctions (MTJs) whose resistance
can be tuned analogously to a synaptic weight – and spintronic neurons, such as voltage-controlled or current-
controlled oscillators that can produce spiking-like outputs.

Recent work has shown that MTJ-based memory cells can serve as efficient synapses: for example, one
group built an associative memory chip with MTJ-based logic-in-memory that achieved ~90% power reduc-
tion compared to a conventional CMOS design. Meanwhile, prototypes of spintronic neurons have been
implemented using devices like spin-torque nano-oscillators, which can integrate input currents and exhibit
non-linear dynamics analogous to integration-and-fire. These devices naturally operate in the analog domain
and can oscillate in the GHz range, potentially enabling very fast neural computing. A popular approach in
spintronics is reservoir computing, where networks of coupled oscillators or domain-wall nanowires process
information without needing precise weight tuning. Several demonstrations in 2019–2023 used spintronic
reservoirs to perform tasks like pattern recognition and time-series prediction with competitive accuracy,
albeit often requiring external post-processing.
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The scientific outlook is that spintronics could offer extremely high-speed and low-power neuromorphic
devices, with features like inherent stochasticity (useful for probabilistic computing) and easy integration
with existing CMOS for hybrid systems. However, many spintronic neuromorphic components are still in
early research stages: achieving reliable, large-scale integration of millions of spin devices with controllable
behavior is a work in progress. The 2024 Marrows et al. review concludes that significant advances in
materials (to improve device uniformity and reduce noise) and circuit architectures will be needed to bring
spintronic neuromorphic computing to practical utility. If those advances occur, spin-based neuromorphic
hardware could complement or even surpass CMOS in specific applications due to its non-volatility, rich
dynamics, and potential for analog processing at very low energy cost.

3.4 Photonic Neuromorphic Computing

Optical or photonic neuromorphic computing emerged in this period as an exciting approach to achieve ultra-
fast neural networks by using light rather than electrical signals. Photonic systems can leverage the high
bandwidth of optical signals and the natural parallelism of light propagation to perform neural computations
with potentially sub-nanosecond latencies. A comprehensive 2024 review by Li et al. in Advanced Materials
highlights the growth in integrated photonic neuromorphic systems. In these systems, components
like microring resonators, Mach-Zehnder interferometers, phase-change materials, and semiconductor lasers
act as neurons and synapses on photonic chips. For example, an optical neuron can be implemented by a
laser that emits a pulse when its input optical intensity exceeds a threshold, analogous to spiking, while
synaptic weights can be tuned via optical modulators or material phase states that affect light transmission.

Between 2019 and 2024, researchers demonstrated photonic circuits that implement small neural networks
for tasks like image recognition, logic operations, and signal processing. One notable result was a photonic
convolutional accelerator that used wavelength-division multiplexing to perform many dot-product opera-
tions in parallel across different colors of light. By slicing broadband light into multiple channels, the system
achieved high parallelism and performed convolutional neural network inference optically at speeds beyond
GHz rates. Another development was the use of phase-change photonic memory devices: by using ma-
terials like GST (commonly used in optical storage) integrated on waveguides, weights of a photonic neural
network could be stored and applied directly in the optical domain with low energy.

Photonic neuromorphic computing offers key advantages: very high speed (because light travels fast and
operations like interference occur essentially at light-speed) and no ohmic losses, which suggests lower energy
per operation at large scale. However, current photonic neural networks are limited in size and precision. The
devices can be bulky (on-chip photonics still require micrometer-scale components) and controlling them with
precision is difficult due to sensitivity to temperature and fabrication variation. There is active research into
more compact photonic devices (e.g. using nanophotonics, metasurfaces) and better integration of photonics
with electronics for control. The 2024 Li et al. review concludes that while photonic neuromorphic hardware
has made great strides – moving from individual photonic neurons to integrated neural network prototypes –
several “breakthrough” device innovations and co-design of optical systems with neural algorithms are needed
to realize its full potential. Still, the prospect of optical processors executing neural network inference or
learning tasks at terahertz bandwidths with minimal heat dissipation remains a compelling long-term goal.

3.5 Neuromorphic Devices with 2D Materials

Two-dimensional materials (atomically thin semiconductors like graphene, MoS�, h-BN, etc.) have attracted
attention for neuromorphic computing due to their unique electrical properties and suitability for dense
integration. Researchers have explored 2D material-based memristors and transistors to function as
artificial synapses and neurons, often termed “memtransistors” when a single device can exhibit combined
memory and transistor behavior. A 2025 review by Choi et al. provides a comprehensive overview of
neuromorphic systems based on 2D materials.

One advantage of 2D materials is their atomic thickness, allowing extreme scaling and even vertical inte-
gration of multiple layers. For instance, van der Waals heterostructures can stack different 2D materials to
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create synaptic devices with multiple programmable conductance states and built-in memory functionality.
These can serve as multi-bit synapses or dynamic synapses that emulate short-term and long-term plasticity
phenomena. Additionally, 2D semiconductors like MoS� offer high carrier mobility and subthreshold de-
vice operation, enabling transistors that switch with very low voltage – a boon for energy-efficient neuronal
circuits. The flexibility of 2D materials also allows for potential neuromorphic sensors and processors on
flexible substrates, opening the door to wearable or implantable neuromorphic chips.

During 2019–2024, multiple proof-of-concept neuromorphic devices using 2D materials were demonstrated.
Examples include MoS�-based memristors showing STDP behavior (where the conductance change depended
on the relative timing of voltage spikes applied, akin to biological synapses) and Black Phosphorus or WSe�
transistors that could integrate pulses and fire, mimicking neuron spiking. Some works achieved all-2D
neuromorphic circuits – e.g. an array of graphene synapses coupled with MoS� neuron transistors that
together performed pattern recognition with online learning. The 2025 review by Choi et al. also emphasizes
the potential for monolithic 3D integration using 2D materials: because these materials can be layered
without destroying each other’s properties, one can envision stacking tens of layers of neurons and synapses
in a single chip, dramatically increasing density beyond what 3D transistor stacking allows. Such vertical
neuromorphic circuits could emulate the brain’s dense interconnectivity in a compact footprint, something
traditional silicon struggles with due to heat and fabrication constraints.

The field of 2D neuromorphic devices is still nascent, but the unique characteristics of 2D materials – atomic
scale thickness, surface-driven properties, flexibility – offer complementary advantages to conventional tech-
nology. Challenges remain in achieving uniform, reproducible devices and integrating them into large-scale
circuits (many demonstrations are of single devices or small arrays under carefully controlled conditions).
Nonetheless, by 2024 researchers have identified clear opportunities where 2D materials could push neuro-
morphic hardware forward, especially in scenarios requiring extreme density (e.g. 3D integrated crossbar
networks) or interfacing with biology (flexible, biocompatible neural interfaces). As fabrication and mate-
rial synthesis methods improve, 2D-material neuromorphic systems may become a key piece of the broader
neuromorphic computing landscape.

4 Algorithmic Advances (2019–2024)

While hardware provides the platform, algorithms and models determine what neuromorphic systems can
do. In the past few years, there has been considerable progress in spiking neural network algorithms, inspired
by both neuroscience and deep learning. These advances seek to make SNNs more trainable, more efficient,
and more capable of performing complex tasks. Here we highlight three important areas of algorithmic
development: improvements in spiking neural network models and coding schemes, the advent of surrogate
gradient techniques for training SNNs, and progress in learning rules that bring SNN training closer to
biological plausibility without sacrificing performance.

4.1 Spiking Neural Networks and Temporal Coding

Spiking neural networks (SNNs) are the primary model of computation in neuromorphic systems. Unlike
traditional artificial neural networks that use continuous-valued activations, SNNs communicate via discrete
spikes (events) over time. Each neuron integrates incoming spikes and emits its own spike when its membrane
potential exceeds a threshold, potentially after some delay. The temporal dimension of spikes – i.e. not
just how many spikes are fired, but when they fire – can carry information. An ongoing research question
has been how to best encode information in SNNs: through rate coding (where the spike rate over an
interval corresponds to a value) versus temporal coding (where precise spike timings or spike order convey
information). Temporal coding schemes exploit the high timing precision possible in neuromorphic hardware
and potentially enable faster, more efficient computation than rate-based approaches.

Prior to 2019, most SNN applications adopted simple rate coding to leverage existing deep learning methods
(by converting pre-trained analog neural networks into spiking ones). However, 2019–2024 saw a surge of
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interest in temporal coding for SNNs, because of its potential to make use of each spike’s information content
more effectively. For example, researchers like Mostafa showed that if one uses time-to-first-spike as the
code (where a neuron fires sooner for a larger input), the input–output mapping of a spiking network can
become differentiable and thus trainable with gradient descent. In a 2018 study, Mostafa demonstrated
supervised learning in a feedforward SNN using temporal coding, achieving high accuracy on MNIST with
far fewer spikes than rate-based networks, since each neuron just fired at most one spike per input example.
This highlights a key advantage: SNNs with temporal codes can be extremely sparse in their spiking (many
neurons remaining silent unless needed), which translates to energy efficiency on neuromorphic hardware.
Other works have explored rank-order coding (where the rank of a neuron’s spike time among peers encodes
value) and phase coding (where spikes fired relative to a global oscillation phase carry information). Temporal
coding is also naturally utilized in event-based sensory processing – for instance, neuromorphic vision
sensors (event cameras) output spikes when pixels change, so SNNs processing these data inherently operate
on the timing of incoming events. By the early 2020s, SNNs were achieving impressive results on tasks like
event-based vision (e.g. classifying hand gestures or driving scenes from event camera input) by leveraging
spatiotemporal patterns of spikes rather than averaging them into rates.
However, temporal coding introduces challenges for learning, since the exact spike timing is a non-
differentiable and discontinuous variable. This motivated new training methods (discussed next) to handle
such cases. It’s worth noting that the field has not settled on a single “best” coding scheme – instead, the
coding may be task-dependent. What has become clear is that neuromorphic hardware and SNNs excel
in scenarios where information is naturally event-driven or time-dependent (audio streams, sensor signals,
etc.), and using the temporal structure of spikes (rather than forcing them into average rates) can unlock
better efficiency and low-latency processing that would be hard to replicate in traditional networks. This
aligns well with the real-world, where stimuli often arrive as asynchronous events; SNNs can process and
respond to each event in real-time, rather than accumulating data into frames or batches.

4.2 Surrogate Gradient Training for SNNs

A major breakthrough in the late 2010s that carried through the early 2020s was the development of sur-
rogate gradient methods for training spiking neural networks. The core difficulty in training SNNs with
backpropagation is that neuron spike events are not differentiable; the Heaviside step function used to
decide spiking has zero derivative almost everywhere and infinite derivative at threshold, which breaks
gradient-based optimization. Earlier approaches to train SNNs either avoided true spikes (using rate-based
approximations) or relied on biologically inspired local rules (like STDP), which did not reach the accuracy
levels of deep learning on complex tasks.
Surrogate gradient learning addresses this by replacing the non-differentiable spike function with a smooth
surrogate function during the backward pass. Essentially, one defines an approximate gradient for the spike
– for example, using a fast sigmoid or triangular function as a stand-in for the spike’s step – which allows
gradients to flow through the network during training. This trick enables the use of backpropagation-through-
time (BPTT) on SNNs, treating them similarly to recurrent neural networks. Emre Neftci and colleagues
demonstrated that with surrogate gradients, SNNs could be trained on image classification tasks to nearly
match the performance of non-spiking networks, all while maintaining sparse spiking activity. This result
was pivotal: it brought SNNs into the realm of high-accuracy deep learning, rather than being limited to
toy problems or requiring manual tuning.
Following this, many works refined surrogate gradient techniques. Surrogate functions were crafted to
balance accuracy and biological plausibility – for instance, one might choose a surrogate that is non-zero
only near the threshold, mimicking the idea that only near-threshold events affect learning, which has
some neurobiological grounding. By 2022, surrogate gradient-trained SNNs achieved state-of-the-art or
near state-of-the-art on benchmarks like CIFAR-10 and even ImageNet (using deep spiking convolutional
architectures), sometimes using fewer time steps or spikes than earlier attempts. A notable example is the
work of Fang and colleagues who built deep residual SNNs and applied surrogate gradient training with
additional techniques (normalization, data augmentation) to reach high accuracy on CIFAR-10 with very
low latency (5–10 simulation steps) – something that wasn’t conceivable a few years prior.
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The impact of surrogate gradients is that it unlocked gradient-based end-to-end training for SNNs,
much like backprop did for traditional neural nets decades ago. This means one can optimize spiking
networks for arbitrary loss functions and tasks, making neuromorphic hardware much more programmable
and application-versatile. The trade-off is that backprop-through-time on SNNs, especially with long sim-
ulation durations, can be memory and computation heavy on conventional hardware (since it unfolds the
temporal dynamics). Researchers are actively exploring more efficient training, including batchless online
training suited for neuromorphic hardware deployment. Nonetheless, surrogate gradient learning stands as a
cornerstone advance, bringing together the efficiency of spike-based computation with the powerful training
algorithms of deep learning. As a result, the algorithmic gap between SNNs and ANNs has significantly
narrowed from 2019 to 2024, making it feasible to tackle complex pattern recognition or motor control
tasks with SNNs and achieve comparable accuracy, while potentially reaping energy advantages when such
networks run on neuromorphic chips.

4.3 Biologically Plausible and Local Learning Rules

While surrogate gradients borrow from machine learning, another thread of research pushes for training
methods that are more aligned with biological mechanisms or more amenable to on-chip learning. One
highlight in this area is the concept of eligibility propagation (e-prop) introduced by Bellec et al.
in 2020. E-prop is an algorithm for training recurrent spiking networks using only information locally
available at each synapse and node (unlike backpropagation which requires global information). In their
Nature Communications paper, Bellec and colleagues showed that e-prop can approach the performance
of backprop-through-time on tasks like speech and music recognition, without requiring the full sequential
unfolding of BPTT. E-prop works by computing eligibility traces at each synapse as the network runs –
these traces capture a synapse’s recent contributions to network activity. A global feedback signal (like
a reward or error broadcast, which could be dopamine-like in the brain) then modulates these traces to
perform weight updates. Crucially, the heavy lifting in credit assignment is done locally and online, making
it far more plausible as a model of learning in biological circuits and more amenable to implementation on
neuromorphic hardware that can support local plasticity.

In the 2019–2024 period, e-prop and related approaches (such as various forms of spike-based reinforcement
learning, or approximations to backprop using locality constraints) have gained traction. For example,
one study integrated e-prop on the SpiNNaker-2 platform and demonstrated on-chip learning for a spiking
recurrent network, showcasing that even without a traditional compute cluster, neuromorphic hardware
could learn from data in real-time using local rules. Other researchers extended these ideas by combining
local learning rules with neuromodulatory signals – akin to brain’s reward systems – to enable one-shot
or few-shot learning in SNNs for tasks like navigation and adaptation.

Another biologically-inspired learning mechanism is spike-timing-dependent plasticity (STDP) and its vari-
ants. STDP is an unsupervised rule adjusting synapses based on the relative timing of pre- and post-synaptic
spikes (strengthening connections when a pre-synaptic spike precedes a post-synaptic spike by a short in-
terval, and weakening otherwise). While STDP alone is often not sufficient for complex tasks, variations of
it have been used in combination with reinforcement signals or used to self-organize network feature detec-
tors. In the early 2020s, researchers developed hybrid learning approaches: for instance, using STDP to
pre-train layers of an SNN (to learn useful feature representations in an unsupervised way), then fine-tuning
the network with surrogate gradient supervised training. Such hybrid approaches can leverage the best of
both worlds: efficient unsupervised adaptation and high-accuracy task-specific learning.

Overall, the drive toward more biologically plausible learning is motivated by both scientific curiosity (un-
derstanding how real neural circuits might learn) and practical considerations (enabling online learning and
lifelong adaptation on neuromorphic devices without needing cloud computing). The progress in algorithms
like e-prop suggests that one can achieve near-backprop performance with local learning rules. This is en-
couraging for future neuromorphic systems that might continuously learn from their environment (e.g. a
robotic agent adapting on the fly) – something currently infeasible with large deep learning models that
require offline retraining. It’s worth noting that there is still a gap between what is plausible in a biological
sense and what is maximally efficient in an engineering sense; thus, research continues into algorithms that
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strike different balances along that spectrum. The period up to 2024 has provided a rich toolbox of learn-
ing methods for SNNs, ranging from pure engineering-driven (surrogate gradients) to bio-inspired (STDP,
e-prop, Hebbian learning), and demonstrated that each has its domain of applicability.

5 Opportunities and Gaps

Neuromorphic computing sits at the intersection of computer engineering, neuroscience, and machine learn-
ing. As we survey the achievements of 2019–2024, it becomes evident that neuromorphic systems have
advanced substantially, yet they have not entirely revolutionized computing… at least, not yet. In this
section, we discuss the key opportunities that lie ahead for neuromorphic computing – the domains where
it could be uniquely transformative – and the gaps or challenges that must be addressed to realize these
opportunities. Topics include the quest for brain-like intelligence, applications in medicine and science, the
perennial issue of power efficiency versus performance, and the integration of neuromorphic hardware into
mainstream computing infrastructure.

5.1 Toward Brain-Like Intelligence and AGI

A long-term aspiration (and oft-used justification) for neuromorphic computing is to move us closer to
artificial general intelligence (AGI) by adopting the brain’s computing principles. Spiking neural nets
with plastic synapses are arguably closer to biological neural networks than the static, dense layers of deep
learning. Could neuromorphic systems one day exhibit cognitive abilities rivaling biological brains? This
remains an open question and a driving motivation. Roy et al. (2019) noted that while neuromorphic
hardware achieves impressive efficiency, a major open problem is task generalization – applying learned
knowledge to new situations – something at which the brain excels but current AI struggles. Neuromorphic
architectures alone do not guarantee general intelligence, but they do enable experimentation with large-
scale models of the brain (e.g. models with spiking neurons, dendritic compartments, and local learning)
that might shed light on principles of intelligence.

One opportunity is in large-scale brain simulation and brain-inspired algorithms. Projects like the European
Human Brain Project have leveraged neuromorphic platforms (SpiNNaker, BrainScaleS) to simulate cortical
microcircuits in hopes of understanding neural computation. Although early results fell short of major
discoveries, continuing improvements in hardware and models may eventually allow simulation of neural
systems at unprecedented scales and realism. On the algorithmic front, neuromorphic systems naturally
support forms of computation that deep networks find difficult – for example, spike-based probabilistic
sampling, dynamic adaptation and learning, and sparse, event-driven sensing. These properties could be
important pieces in the AGI puzzle.

However, a gap remains between current neuromorphic capabilities and the requirements of open-ended
general intelligence. Today’s neuromorphic chips and SNN models, while brain-inspired, are still far simpler
than the brain in structure and function. Cognitive functions like reasoning, language, and abstraction have
not been demonstrated on SNNs at anywhere near the levels achieved by large deep learning models. There is
an ongoing debate whether closing this gap requires more sophisticated neuromorphic designs (incorporating
features like complex dendrites, neuromodulators, etc. found in biology) or if current hardware could do
more if paired with the right learning algorithms. In either case, neuromorphic computing provides a
complementary path to mainstream AI: focusing on architectural efficiency and online adaptation
rather than sheer scale of data and parameters. The opportunity is that by exploring this path, we might
discover new computational paradigms that contribute to AGI, or at least to more general and adaptive AI
systems. The next decade will likely see increasing synergy between neuromorphic engineering and fields like
cognitive science and robotics, as researchers attempt to imbue these systems with higher-level functionality.
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5.2 Neuromorphic Computing in Medicine and Healthcare

One area where neuromorphic technology shows significant promise is biomedical applications, particu-
larly brain-machine interfaces and neural prosthetics. The human brain operates on roughly 20 W of power;
implants or wearables that interface with the brain must likewise be extremely energy-efficient and prefer-
ably real-time. Neuromorphic chips, by design, meet these criteria, making them ideal candidates for in situ
neural signal processing or prosthetic control. For example, a neuromorphic processor could sit on a headset
or implanted device, decoding neural signals from EEG or neural probes on the fly, using milliwatts of power
– something not feasible with power-hungry GPUs. Recent reviews highlight neuromorphic algorithms for
brain implants that could enable closed-loop systems for treating neurological conditions. Applications in-
clude seizure detection in epilepsy (where a spiking neural network could detect the onset of a seizure from
neural data and trigger a stimulus to prevent it) and brain-controlled prosthetic limbs (where a neuromorphic
decoder interprets motor cortex spikes to drive a robotic arm).

By 2024, some initial demonstrations have been made. For instance, researchers built ultra-low-power SNN-
based classifiers that can detect epileptic seizures from intracranial EEG signals in real time, running on
neuromorphic hardware with sub-milliwatt power consumption – a crucial step toward implantable seizure
suppression devices. Another group implemented an SNN on a neuromorphic chip to restore a rudimentary
sense of touch in a prosthetic hand, by encoding tactile sensor inputs into spikes and stimulating nerves
accordingly. These examples are early, but they show how neuromorphic systems can interface with biological
neural systems more naturally than conventional computers. The event-driven operation of neuromorphic
chips is well-suited to processing spiking activity from the body, and their energy efficiency addresses the
battery and heat constraints of implants.

The opportunities in medicine extend beyond implants: neuromorphic sensors and processors could be used
for remote health monitoring, smart prosthetics, and even medical diagnostics where power and latency are
critical (for example, analyzing signals in a portable brain scanner or running AI algorithms in a hearing aid).
Yet, challenges or gaps remain. One gap is the maturity of the technology – regulatory approval and reliability
for medical devices require robust hardware and many hours of testing, and neuromorphic systems are still
largely in the research phase. Another challenge is the need for customization: neural data is complex and
patient-specific, so neuromorphic algorithms must be adaptable. Techniques like on-chip learning (through
local rules or few-shot learning algorithms) will be vital so that a neuromorphic implant can tune itself to an
individual’s neural signatures over time. Encouragingly, the trend in 2019–2024 toward online learning rules
and closed-loop demonstration is directly in line with these needs. In summary, healthcare could be one of
the first domains where neuromorphic computing has a tangible real-world impact, potentially improving
quality of life for patients via brain-inspired, energy-efficient technology.

5.3 Scientific and Industrial Applications

Neuromorphic computing also offers opportunities in scientific research and industry, especially for appli-
cations where real-time data processing and low energy footprint are paramount. One example is in the
realm of smart sensors and IoT (Internet of Things). Neuromorphic processors can be integrated with
sensors (vision, auditory, olfactory, etc.) to create intelligent sensors that preprocess and interpret data on
the edge. For instance, combining event-based vision cameras with neuromorphic chips yields a completely
event-driven vision system that can detect objects or motion with minimal latency and power – useful for
drones, mobile robots, or surveillance devices. In the early 2020s, some prototypes of neuromorphic vision
systems for robotic platforms were demonstrated, where an event camera feeds directly into a spiking net-
work running on Loihi or SpiNNaker to perform obstacle avoidance or target tracking in real-time. These
systems consumed far less power than a traditional camera plus GPU setup and responded faster, since they
didn’t need to wait for frames and could react to each event as it happened.

Another scientific application is in computational neuroscience and brain simulation, which we
touched on earlier. Neuromorphic hardware allows researchers to experiment with models of neural circuits
at speeds comparable to biological real time or faster, which could aid hypothesis testing in neuroscience. It
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also finds use in physics and network science: spiking networks have been used as analog solvers for optimiza-
tion problems (e.g., solving constraint satisfaction or graph coloring by exploiting network dynamics to settle
into solutions). An example is mapping a difficult optimization problem onto a network of spiking neurons
such that the network’s low-energy states correspond to good solutions of the problem; neuromorphic chips
can then find solutions using little energy via their natural dynamics.
In industrial contexts, neuromorphic chips might be deployed in scenarios where power is at a premium – for
example, satellites or remote sensors that run on solar power, or large-scale data centers looking to reduce
energy costs for specific workloads. While general-purpose CPUs and GPUs still dominate, neuromorphic
accelerators could carve out niches. One such niche could be real-time control systems (in manufac-
turing or automobiles) that require fast reflexes; a neuromorphic controller can process sensor inputs and
output control signals with microsecond latencies. Indeed, SpiNNaker-2’s team pointed out potential uses
in automotive AI and tactile internet (haptic feedback systems with tight latency constraints). These are
areas where even milliseconds matter and where power is limited (e.g., a self-driving car or a drone).
The gap to overcome for broader industrial adoption is largely one of software and familiarity. Most engineers
and developers are versed in programming for von Neumann machines and using frameworks like TensorFlow
for AI – programming a spiking neural network on a neuromorphic chip is a very different paradigm. As
of 2024, the ecosystem for neuromorphic software is still maturing. Efforts like Intel’s Lava framework (an
open-source software for Loihi) and community-driven tools like PyNN, Brian2, or Nengo provide higher-
level interfaces, but they are not yet as seamless or widely adopted as standard AI tools. Bridging this gap –
by developing better compilers, libraries, and perhaps middleware that can translate parts of deep learning
models to spiking equivalents – is critical for neuromorphic computing to find widespread use in indus-
try. There is active work in creating benchmarking suites (e.g., NeuroBench) and standards for comparing
neuromorphic solutions to traditional ones in application-specific contexts. If neuromorphic computing can
demonstrate a clear advantage on certain tasks (like ultra-low-power sensor analytics or fast control loops)
in a way that’s accessible to engineers, it will secure its place in the toolkit for future smart systems.

5.4 Power-Efficiency and Scaling Challenges

Energy efficiency is the flagship advantage of neuromorphic computing. Requiring only picojoules or nano-
joules per spike operation, neuromorphic chips can in principle outperform CPUs/GPUs by orders of mag-
nitude in terms of computations per watt. This advantage has been repeatedly demonstrated in research
settings – e.g., Loihi solving a constraint satisfaction problem 1000× more efficiently than a CPU. However,
this comes with a trade-off: the efficiency is best realized on problems that map well to the architecture
(event-driven, sparse, parallelizable problems). If one tries to use a neuromorphic chip like a drop-in replace-
ment for a GPU on tasks like dense matrix multiplication or large-scale number crunching, it may not fare
well due to lower numerical precision and communication overhead.
A key challenge is scaling: how to maintain efficiency as we scale neuromorphic systems to larger sizes
or broader tasks. Biological brains scale by having enormous numbers of relatively slow, low-power units
operating in parallel – neuromorphic systems attempting to scale up face issues of routing millions of spikes
(communication overhead can become significant), manufacturing variations (especially for analog compo-
nents), and simply managing/programming very large networks. For digital chips like Loihi or TrueNorth,
scaling up means adding more cores and interconnect, which at some point runs into chip area and power lim-
its (though still far better than GPUs for equivalent neurons). For novel devices like memristors, integrating
millions or billions of devices reliably is non-trivial and yield issues can arise.
Another challenge is that efficiency alone doesn’t guarantee accuracy. A neuromorphic chip might
be extremely efficient but if it cannot achieve the same accuracy or result quality as a more power-hungry
device, its utility is limited. Throughout 2019–2024, we have seen this gap narrow – surrogate gradient
methods have allowed SNNs to reach accuracy closer to ANNs, and certain tasks (especially those involving
spatiotemporal data) where SNNs even have an edge. But generally, digital accelerators for ANNs (like
TPUs) have also improved efficiency, and for many tasks they remain the easier path to high accuracy.
Thus, neuromorphic computing must keep pushing the envelope not just on efficiency but on capability, to
justify itself for more than niche uses.
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In terms of power-efficiency metrics, a notable development is the emphasis on event-driven benchmarks.
Traditional FLOPS/Watt is not quite applicable to spiking systems; instead, metrics like “energy per infer-
ence on dataset X” or “operations per joule for task Y” are considered. For example, one might report that
a neuromorphic system can classify a DVS (event camera) gesture with 1 mJ of energy versus 100 mJ on a
GPU – a compelling number. Ensuring these comparisons are fair and that neuromorphic hardware is tested
on problems that play to its strengths is crucial. Initiatives in the neuromorphic community to standardize
benchmarks (like IBM’s NSERC or EU’s NEUROTECH consortium guidelines) aim to track progress on
both energy and performance.

In summary, the opportunity is clear: if neuromorphic computing can continue to scale and improve, it offers
a path to sustainable computing at a time when Moore’s Law is slowing and energy concerns are paramount.
The gap to mind is ensuring that as energy efficiency is realized, we do not sacrifice the generality or accuracy
needed for real-world applications. Closing this gap likely requires co-design of hardware and algorithms –
tailoring neuromorphic substrates to support the computational primitives most useful for AI and conversely
developing algorithms that can harness the hardware’s strengths. The 2019–2024 period has already shown
the benefits of such co-design (as seen with Loihi’s features being used by new algorithms and new training
methods emerging partly motivated by hardware constraints). This synergy must continue for neuromorphic
computing to truly deliver on its promise of “more with less”.

5.5 Integration with Conventional Computing

A practical consideration as neuromorphic technology matures is how to integrate it into existing computing
systems and workflows. It’s unlikely that neuromorphic chips will completely replace CPUs or GPUs; instead,
they will function as accelerators or specialized co-processors for certain tasks, at least in the near term.
Therefore, making it easy to offload computations to a neuromorphic device and get results back (much as
one does with a GPU today for deep learning inference) is important.

One challenge is the communication interface: neuromorphic hardware speaks in spikes, conventional hard-
ware in binary numbers. Bridging this involves software that can translate data into spike events and vice
versa. For instance, if using a neuromorphic accelerator for a segment of a signal processing pipeline, one
needs an encoder to convert real-valued signals into spike trains (this could be as simple as a Poisson encoder
or as complex as a sensory front-end model), and a decoder to interpret the spiking output back into a usable
form (like a class label or a control command). Developing efficient and standardized encoding/decoding
schemes is an active area of research. Some schemes try to preserve information with minimal spikes (to
keep energy low) while maintaining accuracy.

Another aspect of integration is software integration. Ideally, a machine learning engineer should be able
to use a neuromorphic accelerator without needing deep expertise in spiking networks. This is where software
frameworks come in: for example, there are efforts to allow training a network in PyTorch or TensorFlow and
then automatically convert and deploy it to neuromorphic hardware (using tools that translate the trained
ANN to an SNN and map it onto the chip). While conversion methods exist (especially for simple rate-coded
networks), a fully seamless pipeline is not yet there. In 2024, Intel’s Lava aimed to provide an open API
where users can define networks and run them on Loihi hardware or in simulation similarly to how they’d
use any AI accelerator. Ensuring such frameworks continue to develop will be key to wider adoption.

From a system architecture perspective, incorporating neuromorphic chips into computers or devices raises
questions: Should they sit on the periphery near sensors? On an IoT node? Or as a card in a server?
Different use cases lead to different integration strategies. For edge devices like smartphones or wearables, a
neuromorphic chip could be embedded to handle always-on tasks like keyword spotting or anomaly detection
in sensor data, waking up the main processor only when necessary – this is analogous to how some phones
have dedicated DSPs for low-power audio processing. In cloud or HPC contexts, neuromorphic boards could
be plugged in to handle particular workloads (for example, maybe handling spiking recurrent networks for
certain types of simulation or running specific event-based data streams). We have already seen neuromor-
phic systems at some national labs exploring things like combinatorial optimization or large-scale neural
simulations, often linking multiple neuromorphic boards together for more capacity.
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The opportunity in integration is that neuromorphic computing doesn’t have to operate in isolation; it
can augment classical computing. But the gap is largely in the interface: both the technical interface
(data formats, protocols, programming models) and the human interface (skills and tools for developers).
Overcoming this will likely involve standardization: as the field coalesces, we might see standard neuron
models or file formats for SNNs, analogous to how today’s deep learning has standardized on certain layer
types and model exchange formats. Already, initiatives like the Neuroscience-inspired Architecture (NIA)
roadmap emphasize interoperability between neuromorphic and traditional systems.
In conclusion, integration is a critical step to ensure neuromorphic innovations transition from lab demos
to deployed technologies. The 2019–2024 period laid groundwork by expanding software frameworks and
demonstrating co-processor style usage of neuromorphic chips. The next steps will involve refining these
interfaces and proving clear use-cases where a neuromorphic accelerator plugged into a conventional system
provides tangible benefits in real-world applications.

6 Conclusion

Neuromorphic computing has made remarkable strides from 2019 to 2024, evolving from a collection of
intriguing prototypes into a more cohesive field with demonstrated advantages in efficiency and new func-
tionality. On the hardware side, we now have a spectrum of neuromorphic platforms: programmable
digital chips like Loihi and SpiNNaker that can implement large spiking networks, analog and mixed-signal
systems leveraging memristors or capacitive circuits for in-memory computing, spintronic and photonic de-
vices pushing the boundaries of speed and parallelism, and emerging nanomaterial-based devices offering
unprecedented integration density. Each of these approaches contributes pieces to the puzzle of brain-like
computation, and ongoing research is actively exploring how to combine them (for example, hybrid systems
where conventional digital logic orchestrates an ensemble of analog nanoscale devices). The hardware gains
have been complemented by algorithmic advances – today’s SNNs are far more trainable and capable
than those of just a few years ago. Techniques like surrogate gradient descent and e-prop have enabled
SNNs to learn complex tasks, reducing the accuracy gap with traditional neural networks while retaining the
temporal processing benefits of spiking dynamics. We have also developed a better understanding of how to
use spikes effectively (e.g. through temporal coding) and how to let networks learn and adapt in real-time,
which could be game-changers for autonomous systems and continual learning applications.
This review also highlights that neuromorphic computing is not a monolithic technology but a multi-faceted
paradigm – its value often appears in specialized contexts. For instance, if an application demands real-time
responsiveness to streams of events under tight energy constraints (like a medical implant or an autonomous
drone), neuromorphic solutions have shown they can excel. Conversely, for tasks requiring massive number
crunching with extreme precision, conventional digital accelerators still hold sway. The path forward for
neuromorphic computing is to capitalize on its strengths: harnessing event-driven parallelism, low-power
operation, and on-chip learning to enable functionalities that would be impractical otherwise. In doing so,
neuromorphic engineers will continue to collaborate with neuroscientists (to inspire new architectures and
rules), material scientists (to realize new devices), and computer scientists (to create better software and
integration methods).
There remain key challenges to address. These include improving the scalability and robustness of neu-
romorphic devices (ensuring that efficiency gains hold at large scales and under variability), developing
user-friendly programming models (so that a wider community can adopt these technologies), and iden-
tifying “killer applications” that clearly demonstrate neuromorphic superiority. Encouragingly, the trend
of the last five years has been positive on all these fronts: energy efficiency metrics have improved, algo-
rithms are more sophisticated, and pilot applications in areas like sensing and prosthetics have validated
core assumptions. Neuromorphic computing is steadily transitioning from a research curiosity to a practical
technology.
In conclusion, the period of 2019–2024 has solidified neuromorphic computing’s promise as a cornerstone for
the future of computing in an era where we are constrained by energy and looking for intelligent, adaptive
systems. It is unlikely to replace conventional computing wholesale – instead, it will augment and enrich it.
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By continuing to learn from the ultimate computing reference (the brain) and by integrating those lessons
into both hardware and software, neuromorphic computing is poised to unlock new horizons in computing
capability. The next few years will be critical in moving from promising demonstrations to scalable systems
working in the wild. The groundwork laid in this period gives ample reason for optimism that neuromorphic
ideas will play a significant role in shaping more efficient, intelligent technologies that align with the needs
of our data-driven, energy-conscious society.
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