Logistic Regression: Overfitting & Regularisation — From Sigmoid to Calibrated Classifiers

2019-02-01

Table of contents

Ĺ	Hypothesis and problem setup	2
2	Likelihood and log-loss	2
3	Optimisation choices	2
1	Bias-variance diagnostics	3
5	Regularisation choices	9
3	Thresholds, imbalance, and calibration	3
7	Reference NumPy implementation	4
3	Scikit-learn baseline	Ę
)	Tuning and diagnostics	Ę
10	Common pitfalls	6
11	Deployment checklist	6
12	Where to go next	6

Logistic regression becomes far more approachable when each ingredient—hypothesis, loss, optimiser, and regularisation—shows how it shapes the final classifier. This walkthrough presents the concepts, supporting equations, and recommended defaults in a concise sequence.

1 Hypothesis and problem setup

The model computes a linear combination of inputs and maps it through a sigmoid to obtain a probability in (0,1).

Mathematics. With observations $(x^{(i)}, y^{(i)}), y \in \{0, 1\}, x \in \mathbb{R}^n$:

$$\log \frac{P(y=1 \mid x)}{1 - P(y=1 \mid x)} = \theta^{\top} x \iff P(y=1 \mid x) = \sigma(\theta^{\top} x) = \frac{1}{1 + e^{-\theta^{\top} x}}.$$

Predict class 1 when $P(y=1 \mid x) \ge \tau$ (default $\tau = 0.5$; see the calibration section for alternatives).

Including a bias column $x_0 = 1$ ensures the intercept is learned rather than baked into the features, a common point of failure in scratch implementations.

2 Likelihood and log-loss

Cross-entropy loss rewards high probability on the correct class and penalises confident misclassifications.

Mathematics. For i.i.d. Bernoulli labels,

$$\mathcal{L}(\theta) = \prod_{i=1}^{m} \sigma(z^{(i)})^{y^{(i)}} (1 - \sigma(z^{(i)}))^{1 - y^{(i)}}, \qquad z^{(i)} = \theta^{\top} x^{(i)}.$$

Taking the negative log-likelihood gives the log-loss / cross-entropy:

$$J(\theta) = -\frac{1}{m} \sum_{i=1}^{m} \left(y^{(i)} \log \sigma(z^{(i)}) + (1 - y^{(i)}) \log(1 - \sigma(z^{(i)})) \right).$$

Vectorised with $X \in \mathbb{R}^{m \times (n+1)}$, $p = \sigma(X\theta)$:

$$J(\theta) = -\frac{1}{m} (y^{\top} \log p + (1 - y)^{\top} \log(1 - p)).$$

Comparing average log-loss with simple classification error illustrates how confident mistakes dominate the optimisation signal even when accuracy is unchanged.

3 Optimisation choices

First-order methods rely on gradient information alone, whereas Newton's method also uses curvature to accelerate convergence when the Hessian is well behaved.

Mathematics. The gradient is

$$\nabla_{\theta} J(\theta) = \frac{1}{m} X^{\top} (p - y).$$

The Hessian for Newton updates is

$$H(\theta) = \frac{1}{m} X^{\top} R X, \qquad R = \operatorname{diag} (p \odot (1 - p)).$$

Options. - Batch or mini-batch gradient descent: simple, scalable, depends on a learning rate α . - Stochastic gradient descent: faster per iteration, good for large datasets. - Newton / IRLS: near-quadratic convergence when m and n are modest.

Contrasting these methods on a small dataset makes the trade-off between per-step cost and convergence speed very clear.

4 Bias-variance diagnostics

Comparing training and validation curves reveals whether the model is underfitting or overfitting and whether additional data, features, or regularisation are needed.

Guidelines. - Underfitting (high bias): training and validation errors stay high—model too simple or overly regularised. - Overfitting (high variance): low training error but high validation error—too many features, too little regularisation.

Diagnostics. Plot learning curves (error vs. sample size), validation curves (error vs. λ or C), and inspect confusion matrices on a holdout set to identify whether capacity or regularisation needs adjustment.

5 Regularisation choices

L1 regularisation promotes sparsity by driving some coefficients to zero, while L2 regularisation shrinks coefficients smoothly and stabilises correlated features.

Formulas. With $\lambda \geq 0$ and intercept excluded from penalties: - L2 (Ridge): $J_{\lambda}(\theta) = J(\theta) + \frac{\lambda}{2m} \sum_{j=1}^{n} \theta_{j}^{2}$ — smooth shrinkage, good with correlated features. - L1 (Lasso): $J_{\lambda}(\theta) = J(\theta) + \frac{\lambda}{m} \sum_{j=1}^{n} |\theta_{j}|$ — drives some coefficients to zero. - Elastic Net: combine L1 and L2 to balance sparsity and stability.

Scaling matters. Standardise features (mean 0, variance 1) before penalising so one unit doesn't dominate the penalty. Never regularise θ_0 .

6 Thresholds, imbalance, and calibration

Choosing a classification threshold balances false positives and false negatives; recalibrating the threshold aligns the classifier with current operating requirements.

Practices. - Tune decision threshold τ for your cost trade-offs; use ROC or PR curves depending on imbalance. - Address class imbalance via class_weight="balanced", resampling, or different metrics (PR-AUC, F1, recall at precision). - Calibrate probabilities with Platt scaling or isotonic regression if validation data shows poor calibration.

7 Reference NumPy implementation

The vectorised trainer below applies L2 regularisation while leaving the intercept unpenalised so the code mirrors textbook equations.

```
import numpy as np
def sigmoid(z):
    # numerically stable sigmoid
    out = np.empty_like(z, dtype=float)
    pos = z >= 0
    neg = ~pos
    out[pos] = 1.0 / (1.0 + np.exp(-z[pos]))
    expz = np.exp(z[neg])
    out[neg] = expz / (1.0 + expz)
    return out
def log_loss(X, y, theta, lam=0.0):
    m = len(y)
    z = X @ theta
    p = sigmoid(z)
    # clamp to avoid log(0)
    eps = 1e-12
    p = np.clip(p, eps, 1 - eps)
    data = -(y @ np.log(p) + (1 - y) @ np.log(1 - p)) / m
    # L2 penalty (skip intercept)
    reg = lam * (theta[1:] @ theta[1:]) / (2 * m)
    return data + reg
def fit_logreg_12(X, y, alpha=0.1, lam=0.0, epochs=5000, tol=1e-6):
    # Batch gradient descent with L2 regularisation. X must include a bias column.
    m, n = X.shape
    theta = np.zeros(n)
    last = np.inf
    for it in range(epochs):
        p = sigmoid(X @ theta)
        grad = (X.T @ (p - y)) / m
        grad[1:] += (lam / m) * theta[1:]
        theta -= alpha * grad
        if it % 50 == 0:
            J = log_loss(X, y, theta, lam)
            if abs(last - J) < tol:</pre>
                break
            last = J
    return theta
# ---- Demo with synthetic data ----
rng = np.random.default_rng(0)
m = 600
X1 = rng.normal([0, 0], [1.0, 1.0], size=(m//2, 2))
X2 = rng.normal([2.0, 2.0], [1.0, 1.0], size=(m//2, 2))
X_no_bias = np.vstack([X1, X2])
y = np.hstack([np.zeros(m//2, dtype=int), np.ones(m//2, dtype=int)])
```

```
# Add interactions to tempt overfitting
x1, x2 = X_no_bias[:, 0], X_no_bias[:, 1]
Phi = np.column_stack([np.ones(m), x1, x2, x1 * x2, x1**2, x2**2])
# Standardise non-bias columns
mu, sigma = Phi[:, 1:].mean(0), Phi[:, 1:].std(0) + 1e-8
Phi[:, 1:] = (Phi[:, 1:] - mu) / sigma
# Train with and without regularisation
theta_noreg = fit_logreg_12(Phi, y, alpha=0.3, lam=0.0, epochs=8000)
theta_12 = fit_logreg_12(Phi, y, alpha=0.3, lam=1.0, epochs=8000)
def accuracy(X, y, th):
    p = sigmoid(X @ th) >= 0.5
   return (p == y).mean()
print("Acc (no reg):", accuracy(Phi, y, theta_noreg))
print("Acc (L2=1.0):", accuracy(Phi, y, theta_12))
print("||theta|| (no reg):", np.linalg.norm(theta_noreg[1:]))
print("||theta|| (L2=1.0):", np.linalg.norm(theta_12[1:]))
```

8 Scikit-learn baseline

```
# pip install scikit-learn
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import classification_report
from sklearn.model selection import train test split
X_train, X_test, y_train, y_test = train_test_split(Phi[:, 1:], y, test_size=0.3, random_state=0)
# scikit-learn adds the intercept automatically.
clf = LogisticRegression(
                         # switch to "l1" or "elasticnet" with solver="saga"
    penalty="12",
    C=1.0,
                         # smaller C => stronger regularisation
    solver="liblinear", # "liblinear" OK for small data; "saga" handles 11/elasticnet
    class_weight="balanced", # handy for imbalance
    max_iter=2000
).fit(X_train, y_train)
print(classification_report(y_test, clf.predict(X_test)))
```

9 Tuning and diagnostics

Sweeping C or λ through a range of values shows how the model responds to different regularisation strengths before selecting a setting for production.

Checklist. - Standardise features and reuse the same transform on validation/test splits. - Search over C (or λ) on a log scale; use cross-validation. - Plot learning curves to decide if you need more data or capacity. - Plot validation curves (metric vs. C) to find the sweet spot. - Inspect confusion matrices, ROC, and PR curves to confirm threshold choices.

10 Common pitfalls

- Penalising the intercept (don't).
- Skipping feature scaling before regularisation.
- Reporting accuracy on imbalanced data; prefer PR-AUC, F1, or recall at fixed precision.
- Ignoring collinearity; L1 or elastic net can help.
- Leaking information: compute scaling parameters on the training set only.

11 Deployment checklist

Add a bias term and standardise features.
Use log-loss for training; pick an optimiser (GD/SGD/IRLS).
Apply L2/L1/elastic net without penalising the intercept.
Tune C (or λ) via cross-validation; inspect learning/validation curves.
Select decision thresholds aligned with costs; evaluate with PR/ROC; check calibration.
Persist the scaler, coefficients, and chosen threshold for reproducible predictions.

12 Where to go next

- Derive and implement stochastic gradient descent with momentum or Adam for large datasets.
- Explore Bayesian logistic regression and compare posterior predictive calibration.
- Extend the calibration section by fitting temperature scaling on neural network logits and contrasting it with Platt scaling.