
Logistic Regression: Overfitting & Regularisation — From Sigmoid
to Calibrated Classifiers

Hypothesis, log-loss, gradient descent/Newton steps, and practical regularisation with
diagnostics

2019-02-01

Table of contents

1 Hypothesis and problem setup 2

2 Likelihood and log-loss 2

3 Optimisation choices 2

4 Bias–variance diagnostics 3

5 Regularisation choices 3

6 Thresholds, imbalance, and calibration 3

7 Reference NumPy implementation 4

8 Scikit-learn baseline 5

9 Tuning and diagnostics 5

10 Common pitfalls 6

11 Deployment checklist 6

12 Where to go next 6

Logistic regression becomes far more approachable when each ingredient—hypothesis, loss, optimiser, and
regularisation—shows how it shapes the final classifier. This walkthrough presents the concepts, supporting
equations, and recommended defaults in a concise sequence.

1

1 Hypothesis and problem setup

The model computes a linear combination of inputs and maps it through a sigmoid to obtain a probability
in (0, 1).

Mathematics. With observations (x(i), y(i)), y ∈ {0, 1}, x ∈ Rn:

log P (y = 1 | x)
1 − P (y = 1 | x) = θ⊤x ⇐⇒ P (y = 1 | x) = σ(θ⊤x) = 1

1 + e−θ⊤x
.

Predict class 1 when P (y=1 | x) ≥ τ (default τ = 0.5; see the calibration section for alternatives).

Including a bias column x0 = 1 ensures the intercept is learned rather than baked into the features, a
common point of failure in scratch implementations.

2 Likelihood and log-loss

Cross-entropy loss rewards high probability on the correct class and penalises confident misclassifications.

Mathematics. For i.i.d. Bernoulli labels,

L(θ) =
m∏

i=1
σ(z(i))y(i)(

1 − σ(z(i))
)1−y(i)

, z(i) = θ⊤x(i).

Taking the negative log-likelihood gives the log-loss / cross-entropy:

J(θ) = − 1
m

m∑
i=1

(
y(i) log σ(z(i)) + (1 − y(i)) log(1 − σ(z(i)))

)
.

Vectorised with X ∈ Rm×(n+1), p = σ(Xθ):

J(θ) = − 1
m

(
y⊤ log p + (1 − y)⊤ log(1 − p)

)
.

Comparing average log-loss with simple classification error illustrates how confident mistakes dominate the
optimisation signal even when accuracy is unchanged.

3 Optimisation choices

First-order methods rely on gradient information alone, whereas Newton’s method also uses curvature to
accelerate convergence when the Hessian is well behaved.

Mathematics. The gradient is
∇θJ(θ) = 1

m
X⊤(p − y).

The Hessian for Newton updates is

H(θ) = 1
m

X⊤RX, R = diag
(
p ⊙ (1 − p)

)
.

2

Options. - Batch or mini-batch gradient descent: simple, scalable, depends on a learning rate α. - Stochastic
gradient descent: faster per iteration, good for large datasets. - Newton / IRLS: near-quadratic convergence
when m and n are modest.

Contrasting these methods on a small dataset makes the trade-off between per-step cost and convergence
speed very clear.

4 Bias–variance diagnostics

Comparing training and validation curves reveals whether the model is underfitting or overfitting and whether
additional data, features, or regularisation are needed.

Guidelines. - Underfitting (high bias): training and validation errors stay high—model too simple or
overly regularised. - Overfitting (high variance): low training error but high validation error—too many
features, too little regularisation.

Diagnostics. Plot learning curves (error vs. sample size), validation curves (error vs. λ or C), and inspect
confusion matrices on a holdout set to identify whether capacity or regularisation needs adjustment.

5 Regularisation choices

L1 regularisation promotes sparsity by driving some coefficients to zero, while L2 regularisation shrinks
coefficients smoothly and stabilises correlated features.

Formulas. With λ ≥ 0 and intercept excluded from penalties: - L2 (Ridge): Jλ(θ) = J(θ) + λ
2m

∑n
j=1 θ2

j

— smooth shrinkage, good with correlated features. - L1 (Lasso): Jλ(θ) = J(θ) + λ
m

∑n
j=1 |θj | — drives

some coefficients to zero. - Elastic Net: combine L1 and L2 to balance sparsity and stability.

Scaling matters. Standardise features (mean 0, variance 1) before penalising so one unit doesn’t dominate
the penalty. Never regularise θ0.

6 Thresholds, imbalance, and calibration

Choosing a classification threshold balances false positives and false negatives; recalibrating the threshold
aligns the classifier with current operating requirements.

Practices. - Tune decision threshold τ for your cost trade-offs; use ROC or PR curves depending on
imbalance. - Address class imbalance via class_weight="balanced", resampling, or different metrics (PR-
AUC, F1, recall at precision). - Calibrate probabilities with Platt scaling or isotonic regression if validation
data shows poor calibration.

3

7 Reference NumPy implementation

The vectorised trainer below applies L2 regularisation while leaving the intercept unpenalised so the code
mirrors textbook equations.

import numpy as np

def sigmoid(z):
numerically stable sigmoid
out = np.empty_like(z, dtype=float)
pos = z >= 0
neg = ~pos
out[pos] = 1.0 / (1.0 + np.exp(-z[pos]))
expz = np.exp(z[neg])
out[neg] = expz / (1.0 + expz)
return out

def log_loss(X, y, theta, lam=0.0):
m = len(y)
z = X @ theta
p = sigmoid(z)
clamp to avoid log(0)
eps = 1e-12
p = np.clip(p, eps, 1 - eps)
data = -(y @ np.log(p) + (1 - y) @ np.log(1 - p)) / m
L2 penalty (skip intercept)
reg = lam * (theta[1:] @ theta[1:]) / (2 * m)
return data + reg

def fit_logreg_l2(X, y, alpha=0.1, lam=0.0, epochs=5000, tol=1e-6):
Batch gradient descent with L2 regularisation. X must include a bias column.
m, n = X.shape
theta = np.zeros(n)
last = np.inf
for it in range(epochs):

p = sigmoid(X @ theta)
grad = (X.T @ (p - y)) / m
grad[1:] += (lam / m) * theta[1:]
theta -= alpha * grad
if it % 50 == 0:

J = log_loss(X, y, theta, lam)
if abs(last - J) < tol:

break
last = J

return theta

---- Demo with synthetic data ----
rng = np.random.default_rng(0)
m = 600
X1 = rng.normal([0, 0], [1.0, 1.0], size=(m//2, 2))
X2 = rng.normal([2.0, 2.0], [1.0, 1.0], size=(m//2, 2))
X_no_bias = np.vstack([X1, X2])
y = np.hstack([np.zeros(m//2, dtype=int), np.ones(m//2, dtype=int)])

4

Add interactions to tempt overfitting
x1, x2 = X_no_bias[:, 0], X_no_bias[:, 1]
Phi = np.column_stack([np.ones(m), x1, x2, x1 * x2, x1**2, x2**2])

Standardise non-bias columns
mu, sigma = Phi[:, 1:].mean(0), Phi[:, 1:].std(0) + 1e-8
Phi[:, 1:] = (Phi[:, 1:] - mu) / sigma

Train with and without regularisation
theta_noreg = fit_logreg_l2(Phi, y, alpha=0.3, lam=0.0, epochs=8000)
theta_l2 = fit_logreg_l2(Phi, y, alpha=0.3, lam=1.0, epochs=8000)

def accuracy(X, y, th):
p = sigmoid(X @ th) >= 0.5
return (p == y).mean()

print("Acc (no reg):", accuracy(Phi, y, theta_noreg))
print("Acc (L2=1.0):", accuracy(Phi, y, theta_l2))
print("||theta|| (no reg):", np.linalg.norm(theta_noreg[1:]))
print("||theta|| (L2=1.0):", np.linalg.norm(theta_l2[1:]))

8 Scikit-learn baseline

pip install scikit-learn
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import classification_report
from sklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test = train_test_split(Phi[:, 1:], y, test_size=0.3, random_state=0)

scikit-learn adds the intercept automatically.
clf = LogisticRegression(

penalty="l2", # switch to "l1" or "elasticnet" with solver="saga"
C=1.0, # smaller C => stronger regularisation
solver="liblinear", # "liblinear" OK for small data; "saga" handles l1/elasticnet
class_weight="balanced", # handy for imbalance
max_iter=2000

).fit(X_train, y_train)

print(classification_report(y_test, clf.predict(X_test)))

9 Tuning and diagnostics

Sweeping C or λ through a range of values shows how the model responds to different regularisation strengths
before selecting a setting for production.

5

Checklist. - Standardise features and reuse the same transform on validation/test splits. - Search over C
(or λ) on a log scale; use cross-validation. - Plot learning curves to decide if you need more data or capacity.
- Plot validation curves (metric vs. C) to find the sweet spot. - Inspect confusion matrices, ROC, and PR
curves to confirm threshold choices.

10 Common pitfalls

• Penalising the intercept (don’t).
• Skipping feature scaling before regularisation.
• Reporting accuracy on imbalanced data; prefer PR-AUC, F1, or recall at fixed precision.
• Ignoring collinearity; L1 or elastic net can help.
• Leaking information: compute scaling parameters on the training set only.

11 Deployment checklist

□ Add a bias term and standardise features.
□ Use log-loss for training; pick an optimiser (GD/SGD/IRLS).
□ Apply L2/L1/elastic net without penalising the intercept.
□ Tune C (or λ) via cross-validation; inspect learning/validation curves.
□ Select decision thresholds aligned with costs; evaluate with PR/ROC; check calibration.
□ Persist the scaler, coefficients, and chosen threshold for reproducible predictions.

12 Where to go next

• Derive and implement stochastic gradient descent with momentum or Adam for large datasets.
• Explore Bayesian logistic regression and compare posterior predictive calibration.
• Extend the calibration section by fitting temperature scaling on neural network logits and contrasting

it with Platt scaling.

6

	Hypothesis and problem setup
	Likelihood and log-loss
	Optimisation choices
	Bias–variance diagnostics
	Regularisation choices
	Thresholds, imbalance, and calibration
	Reference NumPy implementation
	Scikit-learn baseline
	Tuning and diagnostics
	Common pitfalls
	Deployment checklist
	Where to go next

