Univariate Linear Regression with Gradient Descent

From first principles to a clean NumPy implementation, plus learning-rate tuning and convergence checks

2018-12-01

Table of contents

1 Hypothesis and problem setup 1 Cost function $\mathbf{2}$ Gradient descent updates $\mathbf{2}$ 4 Geometry $\mathbf{2}$ Reference implementation $\mathbf{2}$ 6 Learning rate and convergence 3 Closed-form comparison 3 Common pitfalls 4 Checklist for reuse 4 10 Where to go next 4

This walkthrough takes univariate linear regression from scratch to a working implementation. Each section pairs the core idea with the supporting math and code.

1 Hypothesis and problem setup

The model assumes the relationship between x and y is well described by a straight line whose slope and intercept are learned from data.

Mathematics.

$$\hat{y} = h_{\theta}(x) = \theta_0 + \theta_1 x,$$

where θ_0 is the intercept and θ_1 the slope.

2 Cost function

The mean squared error objective averages the squared residuals between predictions and observed targets, amplifying large mistakes and keeping the optimisation convex.

Mathematics.

$$J(\theta_0,\theta_1) = \frac{1}{2m} \sum_{i=1}^m \left(\theta_0 + \theta_1 x^{(i)} - y^{(i)}\right)^2.$$

The $\frac{1}{2}$ factor simplifies derivatives.

3 Gradient descent updates

The gradient components measure how changes to the intercept or slope affect the total error, allowing gradient descent to update both parameters in a coordinated way.

Mathematics.

$$\frac{\partial J}{\partial \theta_0} = \frac{1}{m} \sum_{i=1}^m \left(h_\theta(x^{(i)}) - y^{(i)} \right), \qquad \frac{\partial J}{\partial \theta_1} = \frac{1}{m} \sum_{i=1}^m \left(h_\theta(x^{(i)}) - y^{(i)} \right) x^{(i)} \right).$$

Update rule.

$$\theta_j \leftarrow \theta_j - \alpha \cdot \frac{\partial J}{\partial \theta_j}, \qquad j \in \{0,1\}.$$

4 Geometry

- $h_{\theta}(x)$ is a straight line in the (x,y) plane.
- The cost surface $J(\theta_0,\theta_1)$ is convex with a unique minimum.
- The learning rate α determines how quickly gradient descent approaches that minimum.

• data points
•

•

•

x

best-fit line (learned h)

5 Reference implementation

```
import numpy as np
# Synthetic data: y 1.5 + 2.0*x + noise
rng = np.random.default_rng(7)
m = 200
x = rng.uniform(-3, 3, size=m)
y = 1.5 + 2.0 * x + rng.normal(0, 0.6, size=m)
X = np.column_stack([np.ones_like(x), x])
theta = np.zeros(2)
alpha = 0.05
epochs = 2000
def cost(X, y, th):
    r = X @ th - y
    return 0.5 / len(y) * (r @ r)
history = []
for it in range(epochs):
    r = X @ theta - y
    grad = (X.T @ r) / m
    theta -= alpha * grad
    if it % 50 == 0:
        history.append(cost(X, y, theta))
print("theta:", theta)
print("final cost:", cost(X, y, theta))
```

6 Learning rate and convergence

Select α so that the cost decreases steadily without divergence or oscillation.

Checks. - Plot cost vs. iterations; it should decline smoothly and flatten. - Inspect residuals occasionally; they should shrink and centre around zero.

7 Closed-form comparison

Comparing gradient-descent parameters with the closed-form solution verifies that the implementation and optimisation are consistent.

Mathematics.

$$\theta_1^* = \frac{\sum_i (x^{(i)} - \bar{x})(y^{(i)} - \bar{y})}{\sum_i (x^{(i)} - \bar{x})^2}, \qquad \theta_0^* = \bar{y} - \theta_1^* \bar{x}.$$

8 Common pitfalls

- Forgetting the intercept term.
- Using a learning rate that is too high or too low.
- Scaling or centring with statistics computed on the full dataset (data leakage).
- Stopping before the cost stabilises.

9 Checklist for reuse

Ш	Define $h_{\theta}(x) = \theta_0 + \theta_1 x$.
	Use $J(\theta) = \frac{1}{2m} \sum_{i=0}^{n} (h_{\theta}(x^{(i)}) - y^{(i)})^2$.
	Implement batch gradient descent with the derived gradients.
	Tune α on a log scale; monitor cost.
	Validate with a holdout set or cross-validation.
	(Optional) Cross-check with the normal equation.

10 Where to go next

- Extend to multivariate regression and reuse the vectorised gradient descent from the companion walk-through.
- Add L_2 regularisation and observe how coefficients shrink as you increase the penalty.
- Introduce polynomial features to capture non-linear trends, then compare training and validation error to watch for overfitting.