Univariate Linear Regression with Gradient Descent

From first principles to a clean NumPy implementation, plus learning-rate tuning and
convergence checks

2018-12-01

Table of contents

1 Hypothesis and problem setup 1
2 Cost function 2
3 Gradient descent updates 2
4 Geometry 2
5 Reference implementation 2
6 Learning rate and convergence 3
7 Closed-form comparison 3
8 Common pitfalls 4
9 Checklist for reuse 4
10 Where to go next 4

This walkthrough takes univariate linear regression from scratch to a working implementation. Each section
pairs the core idea with the supporting math and code.

1 Hypothesis and problem setup

The model assumes the relationship between = and y is well described by a straight line whose slope and
intercept are learned from data.

Mathematics.

where 0, is the intercept and 6, the slope.

2 Cost function

The mean squared error objective averages the squared residuals between predictions and observed targets,
amplifying large mistakes and keeping the optimisation convex.

Mathematics.
1 Zm) 12
I (00, 01 " 2m — (6 + 6,21 —y1)".

3

The % factor simplifies derivatives.

3 Gradient descent updates

The gradient components measure how changes to the intercept or slope affect the total error, allowing
gradient descent to update both parameters in a coordinated way.

Mathematics.
oJ 1 & . . oJ 1 & . _ .
7:f§ hoa () — (8 7:72 o (@) — @) 20
890 m - (9(1‘) Yy)a 891 m -~ (O(x) Yy)I)

Update rule.

oJ .

4 Geometry

o hy(x) is a straight line in the (x,y) plane.
o The cost surface J(6,,0,) is convex with a unique minimum.
e The learning rate o determines how quickly gradient descent approaches that minimum.

e data points

x
best-fit line (learmed h)

5 Reference implementation

import numpy as np

Synthetic data: y 1.5 + 2.0*x + noise

rng = np.random.default_rng(7)

m = 200

x = rng.uniform(-3, 3, size=m)

y 1.5 + 2.0 * x + rng.normal(0, 0.6, size=m)

X

np.column_stack([np.ones_like(x), x])

theta = np.zeros(2)
alpha = 0.05
epochs = 2000

def cost(X, y, th):
r=X0@th -y
return 0.5 / len(y) * (r @ r)

history = []
for it in range(epochs):
r = X @ theta - y
grad = X.T@r) /m
theta -= alpha * grad
if it % 50 == 0O:
history.append(cost(X, y, theta))

print("theta:", theta)
print("final cost:", cost(X, y, theta))

6 Learning rate and convergence

Select « so that the cost decreases steadily without divergence or oscillation.

Checks. - Plot cost vs. iterations; it should decline smoothly and flatten. - Inspect residuals occasionally;
they should shrink and centre around zero.

7 Closed-form comparison

Comparing gradient-descent parameters with the closed-form solution verifies that the implementation and
optimisation are consistent.

Mathematics.

8 Common pitfalls

oooooo

10

Forgetting the intercept term.

Using a learning rate that is too high or too low.

Scaling or centring with statistics computed on the full dataset (data leakage).
Stopping before the cost stabilises.

Checklist for reuse

Define hy(z) = 0, + 6, x.

Use J(6) = & > (hy(a) —)2,

Implement batch gradient descent with the derived gradients.
Tune « on a log scale; monitor cost.

Validate with a holdout set or cross-validation.

(Optional) Cross-check with the normal equation.

Where to go next

Extend to multivariate regression and reuse the vectorised gradient descent from the companion walk-

through.

Add L, regularisation and observe how coefficients shrink as you increase the penalty.

Introduce polynomial features to capture non-linear trends, then compare training and validation error
to watch for overfitting.

	Hypothesis and problem setup
	Cost function
	Gradient descent updates
	Geometry
	Reference implementation
	Learning rate and convergence
	Closed-form comparison
	Common pitfalls
	Checklist for reuse
	Where to go next

