
Univariate Linear Regression with Gradient Descent
From first principles to a clean NumPy implementation, plus learning-rate tuning and

convergence checks

2018-12-01

Table of contents

1 Hypothesis and problem setup 1

2 Cost function 2

3 Gradient descent updates 2

4 Geometry 2

5 Reference implementation 2

6 Learning rate and convergence 3

7 Closed-form comparison 3

8 Common pitfalls 4

9 Checklist for reuse 4

10 Where to go next 4
This walkthrough takes univariate linear regression from scratch to a working implementation. Each section
pairs the core idea with the supporting math and code.

1 Hypothesis and problem setup

The model assumes the relationship between 𝑥 and 𝑦 is well described by a straight line whose slope and
intercept are learned from data.
Mathematics.

̂𝑦 = ℎ𝜃(𝑥) = 𝜃0 + 𝜃1𝑥,
where 𝜃0 is the intercept and 𝜃1 the slope.

1

2 Cost function

The mean squared error objective averages the squared residuals between predictions and observed targets,
amplifying large mistakes and keeping the optimisation convex.

Mathematics.
𝐽(𝜃0, 𝜃1) = 1

2𝑚
𝑚

∑
𝑖=1

(𝜃0 + 𝜃1𝑥(𝑖) − 𝑦(𝑖))2.

The 1
2 factor simplifies derivatives.

3 Gradient descent updates

The gradient components measure how changes to the intercept or slope affect the total error, allowing
gradient descent to update both parameters in a coordinated way.

Mathematics.

𝜕𝐽
𝜕𝜃0

= 1
𝑚

𝑚
∑
𝑖=1

(ℎ𝜃(𝑥(𝑖)) − 𝑦(𝑖)), 𝜕𝐽
𝜕𝜃1

= 1
𝑚

𝑚
∑
𝑖=1

(ℎ𝜃(𝑥(𝑖)) − 𝑦(𝑖)) 𝑥(𝑖)).

Update rule.
𝜃𝑗 ← 𝜃𝑗 − 𝛼 ⋅ 𝜕𝐽

𝜕𝜃𝑗
, 𝑗 ∈ {0, 1}.

4 Geometry

• ℎ𝜃(𝑥) is a straight line in the (𝑥, 𝑦) plane.
• The cost surface 𝐽(𝜃0, 𝜃1) is convex with a unique minimum.
• The learning rate 𝛼 determines how quickly gradient descent approaches that minimum.

y
� • data points
� •
� •
�•
�������������������� x

� best-fit line (learned h�)

5 Reference implementation

2

import numpy as np

Synthetic data: y � 1.5 + 2.0*x + noise
rng = np.random.default_rng(7)
m = 200
x = rng.uniform(-3, 3, size=m)
y = 1.5 + 2.0 * x + rng.normal(0, 0.6, size=m)

X = np.column_stack([np.ones_like(x), x])

theta = np.zeros(2)
alpha = 0.05
epochs = 2000

def cost(X, y, th):
r = X @ th - y
return 0.5 / len(y) * (r @ r)

history = []
for it in range(epochs):

r = X @ theta - y
grad = (X.T @ r) / m
theta -= alpha * grad
if it % 50 == 0:

history.append(cost(X, y, theta))

print("theta:", theta)
print("final cost:", cost(X, y, theta))

6 Learning rate and convergence

Select 𝛼 so that the cost decreases steadily without divergence or oscillation.

Checks. - Plot cost vs. iterations; it should decline smoothly and flatten. - Inspect residuals occasionally;
they should shrink and centre around zero.

7 Closed-form comparison

Comparing gradient-descent parameters with the closed-form solution verifies that the implementation and
optimisation are consistent.

Mathematics.
𝜃∗

1 = ∑𝑖(𝑥(𝑖) − ̄𝑥)(𝑦(𝑖) − ̄𝑦)
∑𝑖(𝑥(𝑖) − ̄𝑥)2 , 𝜃∗

0 = ̄𝑦 − 𝜃∗
1 ̄𝑥.

3

8 Common pitfalls

• Forgetting the intercept term.
• Using a learning rate that is too high or too low.
• Scaling or centring with statistics computed on the full dataset (data leakage).
• Stopping before the cost stabilises.

9 Checklist for reuse

□ Define ℎ𝜃(𝑥) = 𝜃0 + 𝜃1𝑥.
□ Use 𝐽(𝜃) = 1

2𝑚 ∑(ℎ𝜃(𝑥(𝑖)) − 𝑦(𝑖))2.
□ Implement batch gradient descent with the derived gradients.
□ Tune 𝛼 on a log scale; monitor cost.
□ Validate with a holdout set or cross-validation.
□ (Optional) Cross-check with the normal equation.

10 Where to go next

• Extend to multivariate regression and reuse the vectorised gradient descent from the companion walk-
through.

• Add 𝐿2 regularisation and observe how coefficients shrink as you increase the penalty.
• Introduce polynomial features to capture non-linear trends, then compare training and validation error

to watch for overfitting.

4

	Hypothesis and problem setup
	Cost function
	Gradient descent updates
	Geometry
	Reference implementation
	Learning rate and convergence
	Closed-form comparison
	Common pitfalls
	Checklist for reuse
	Where to go next

