Multivariate Linear Regression via Gradient Descent

From geometry to vectorized implementation with feature scaling, learning-rate tuning,
and convergence diagnostics

2019-01-01

Table of contents

1 Hypothesis and problem setup 2
2 Notation that scales 2
3 Cost function 2
4 Gradient of the cost 2
5 Gradient descent loop 3
6 Feature scaling 3
7 Learning rate selection 3
8 Reference implementation 3
9 Geometry of the model 4
10 Common pitfalls 4
11 Normal equation 5
12 L, regularisation 5
13 Deployment checklist 5
14 Where to go next 5

This walkthrough builds multivariate linear regression from the ground up, linking the geometric interpre-
tation to a fully vectorized gradient-descent implementation with practical tuning advice.

1 Hypothesis and problem setup

The model assumes that the target value is a linear combination of the input features plus an intercept.
Training consists of finding coefficients that minimise prediction error over the dataset.

Mathematics. For features x4, ..., x,, and parameters 6, the hypothesis is
y=0y+ 0,z +-+0,z,.

Training means picking # that minimise the total squared error between predictions and targets.

2 Notation that scales

Representing the dataset with matrices removes explicit loops and exposes efficient linear algebra operations
that scale to many features and observations.

Mathematics. With m examples and n features: - Design matrix X € R"™*(+1) with a leading column of
ones for the intercept. - Parameter vector § € R™*1*1 _ Targets y € R™*1.

Vectorised prediction is just
gy = X0.

3 Cost function

The mean squared error objective penalises squared residuals. The factor of % ensures clean derivatives while
leaving the optimum unchanged.

Mathematics.
1 & . L2 1
0) = — ho (@) — @ = || X0 — y2.
T0) = 50> hfa) —y) = 51X~

The % factor keeps the gradient tidy.

4 Gradient of the cost

The gradient points in the direction of steepest increase of the cost. Taking a step opposite to this vector
decreases the objective for sufficiently small learning rates.

Mathematics. Taking derivatives of J with respect to 0 gives

V,J(6) = %XT(XQ —y).

5 Gradient descent loop

At each iteration, the algorithm computes residuals, forms the gradient, and updates the parameters. Vec-
torisation keeps this routine compact and efficient.

Algorithm. Repeat until convergence (or for a fixed budget): 1. r = X0 —y 2. g = %XTT 3.0+ 60—ag

6 Feature scaling

Normalising features to comparable ranges produces a level cost surface so gradient descent converges faster
and avoids numerical issues.

. . . T . . T ,;,—min;
Practices. - Standardisation (z-score): x; 707”7 - Min—max scaling: ; < 2

j maxj —min,;

J

Statistics are estimated on the training set and reused everywhere else.

7 Learning rate selection

Choose a learning rate that yields a monotonic decrease in the cost without oscillations. Monitoring gradient
norms and parameter updates helps confirm that the optimisation is settling.

Diagnostics. Cost curves should drop smoothly and flatten near convergence, while gradient norms and
parameter deltas shrink toward zero.

8 Reference implementation

Putting the pieces together reinforces the mechanics.
import numpy as np

Synthetic data: y 3 + 2xx1 - 0.5%x2 + noise
rng = np.random.default_rng(42)

m = 400

x1 = rng.normal(50, 10, size=m)

X2 = rng.normal(S, 2, size=m)

y = 3 + 2*%x1 - 0.5%x2 + rng.normal(0, 3, size=m)

X

np.column_stack([np.ones(m), x1, x2])

Feature scaling (skip bias column)
mu = X[:, 1:].mean(axis=0)

std = X[:, 1:].std(axis=0)

X[:, 1:1] = (X[:, 1:] - mu) / std

theta = np.zeros(X.shape[1])
alpha = 0.1
epochs = 5000

def cost(X, y, th):
r=X0Qth -y
return 0.5 / len(y) * (r @ r)

hist = []
for it in range(epochs):
r = X @ theta - y
grad = (X.T @r) /m
theta -= alpha * grad
if it % 100 == 0:
hist.append(cost(X, y, theta))

print("theta (scaled):", theta)
print("final cost:", cost(X, y, theta))

9 Geometry of the model

In two dimensions the hypothesis is a line; in higher dimensions it becomes a hyperplane. The squared-error
objective measures vertical deviations of data points from this hyperplane.

y (target)
e data point (x7(i), y~(i))

feature direction(s)
(plane h = X)

The hyperplane hy = X6 cuts through the cloud of points; vectorisation simply evaluates that plane for all
rows simultaneously.

10 Common pitfalls

e Missing intercept column — biased predictions.

e Unscaled features — slow or unstable convergence.

e Oversized learning rate — cost oscillation or divergence.
o Scaling statistics computed on full data — leakage.

e Stopping too early — cost still trending down.

11 Normal equation

The closed form is like solving a circuit by hand: for small, well-behaved systems it is instant, but the method
becomes brittle as complexity rises.

Mathematics.
0 = (XTX)*lXTy.

12 L, regularisation

Ridge adds a penalty proportional to the squared magnitude of the coefficients, shrinking them toward zero
and reducing sensitivity to correlated features.

Mathematics.
1 A =
0) = —||X0—y|?+ — 62
KO = g X0l + 503 6,

1 A0

13 Deployment checklist

Build X with a bias column of ones.

Split data into train/validation/test.

Standardise features using train statistics only.

Initialise 6 (zeros or small random values).

Tune the learning rate via a quick sweep and monitor cost.
Stop when cost plateaus or gradients are tiny.

Evaluate on validation, then test.

Persist scaling parameters and 6 for inference.

Ooooooooo

14 Where to go next

o Implement stochastic or mini-batch gradient descent with momentum/Adam and compare convergence
speed.

« Explore feature engineering (polynomials, interactions) and apply regularisation to manage complexity.

« Extend the notebook to include diagnostics such as residual plots and R? on validation data.

	Hypothesis and problem setup
	Notation that scales
	Cost function
	Gradient of the cost
	Gradient descent loop
	Feature scaling
	Learning rate selection
	Reference implementation
	Geometry of the model
	Common pitfalls
	Normal equation
	L_2 regularisation
	Deployment checklist
	Where to go next

